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Exceptional topological insulators
M. Michael Denner 1✉, Anastasiia Skurativska 1, Frank Schindler1,2, Mark H. Fischer 1, Ronny Thomale 3,

Tomáš Bzdušek 1,4 & Titus Neupert 1

We introduce the exceptional topological insulator (ETI), a non-Hermitian topological state of

matter that features exotic non-Hermitian surface states which can only exist within the

three-dimensional topological bulk embedding. We show how this phase can evolve from a

Weyl semimetal or Hermitian three-dimensional topological insulator close to criticality when

quasiparticles acquire a finite lifetime. The ETI does not require any symmetry to be stabi-

lized. It is characterized by a bulk energy point gap, and exhibits robust surface states that

cover the bulk gap as a single sheet of complex eigenvalues or with a single exceptional point.

The ETI can be induced universally in gapless solid-state systems, thereby setting a paradigm

for non-Hermitian topological matter.
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S ince their theoretical conception1,2 and experimental
discovery3,4, three-dimensional topological insulators (3D
TIs) have become the focal point for research on topological

quantum matter. Their key feature are conducting surface states
resembling a single species of gapless Dirac electrons, which are
protected against surface perturbations as long as time-reversal
and charge-conservation symmetry are preserved5. Transcending
the realm of quantum matter, the TI phase has since been realized
in many different settings including meta-materials, such as
photonic and phononic crystals6–9.

Most of such meta-material platforms are accidentally or
tunably lossy, such that their effective Hamiltonian description
involves non-Hermitian terms due to the lack of energy
conservation10. The same holds for interacting electronic quan-
tum systems in which quasiparticles attain a finite lifetime, as
manifested in a complex self-energy11–14. Starting from the initial
classification of topological matter based on Hermitian Hamil-
tonians, the study of systems with non-negligible loss and gain
calls for an extension to non-Hermitian topological matter. At
this early stage of the field, several principles have been uncov-
ered: (i) non-Hermitian systems have stable band degeneracies in
two dimensions (2D), called exceptional points15–17 (Fig. 1a). (ii)
Two different types of gaps have to be distinguished when
eigenvalues are complex—line gaps, which can be adiabatically
transformed into a Hermitian system, and point gaps, where this
is not the case18. (iii) The topological bulk-boundary corre-
spondence may break down for non-Hermitian systems due to
the skin effect, which leads to dramatic shifts in the spectrum for
open versus periodic boundary conditions (PBCs) as well as to a
piling up of bulk states at the boundary19–26. (iv) The structure of
topological invariants becomes more intricate, as complex-valued
energy eigenvalues can themselves acquire a winding
number27,28.

The key property of the single Dirac electron on the 3D TI
surface is that it represents an anomaly: in purely 2D such a state
can neither be regularized on a lattice (implied by the fermion
doubling theorem) nor in the continuum (implied by gauge
symmetry)29,30. Our search for a non-Hermitian analog of the 3D
TI thus adopts a perspective of reverse-engineering: what could
the anomalous non-Hermitian surface states be which necessitate
a 3D topological bulk embedding? Two options come to mind: (1)

a 2D band structure with a single exceptional point31; and (2) a
single band with eigenvalues E(kx, ky)= kx+ iky, which repre-
sents a vortex32, without the otherwise required antivortex. In this
work, we introduce exceptional topological insulators (ETIs) as
the paradigmatic class of 3D non-Hermitian topological systems.
We here extend the notion of “insulator” to the case of point-
gapped non-Hermitian systems, irrespective of their transport
properties. Under PBCs, ETIs have a point gap in the spectrum,
while in the presence of a boundary they support one of the above
two types of surface states. We show that surface manipulations
can interpolate between the cases (1) and (2). In particular, we
demonstrate that our ETI models do not exhibit a non-Hermitian
skin effect, such that the surface states are not overshadowed by a
collapse of the point gap. In contrast to the conventional 3D TI,
the surface states of an ETI do not require time-reversal sym-
metry for their protection and may therefore generically occur in
non-Hermitian systems.

Results
Model. We formulate a microscopic electronic quantum model
for an ETI. Our results, however, hold independently from this
setting and readily carry over to systems with other degrees of
freedom.

Consider a tight-binding model on a cubic lattice with an s and
a p orbital at each site, each of which can be filled with spin ↑ and
↓ electrons (Fig. 1b). Let the Pauli matrices σμ and τμ act on the
spin and orbital degrees of freedom, respectively, with μ= 0, x, y,
z, and the 0th Pauli matrix as the 2 × 2 identity matrix. The Bloch
Hamiltonian is defined as

HðkÞ ¼ ∑
j¼x;y;z

cos kj �M

� �
τzσ0 þ λ ∑

j¼x;y;z
sin kj τxσ j

þ ½sin α τ0 þ cos α τz�ðB � σÞ þ iδ τxσ0:

ð1Þ
For B= δ= 0, H(k) is a well-known Hamiltonian of a
conventional 3D TI if 1 < ∣M∣ < 3 with phase transitions towards
trivial insulators at ∣M∣= 1 and ∣M∣= 3 (see Fig. 1c). The
parameter M controls the band inversion between s and p
orbitals, while λ represents the spin-orbit coupling. Furthermore,
B represents a Zeeman field, which we take to be B= (B, B, B)⊤

Fig. 1 Constructing an ETI from a Hermitian 3D TI. a Schematic band structure near an exceptional point (green). b Real-space cubic lattice model of the
3D TI with s (p) orbitals depicted in blue (red). c Bulk spectrum of the Hermitian 3D TI in the nontrivial phase (1 <M < 3) along one momentum direction k
with a superimposed Dirac surface state (blue). d Bulk spectrum of the Hermitian 3D TI at the transition point (M= 3) along one momentum direction k. e
Bulk spectrum in the complex plane [Re(E), Im(E)] of the non-Hermitian model in Eq. (1) under PBC for all momenta kx, ky, kz at zero magnetic field (B= 0,
M= 2.3, λ= 1, and δ= 0.5). As ∣M− 3∣ > δ, a line gap opens along the imaginary axis, with six hole regions with corresponding point-gap invariants w3D. f
The bulk spectrum for M= 3 and δ= 1 for the non-Hermitian model shows five hole regions, with corresponding point-gap invariants w3D.
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throughout, and α accounts for a possible imbalance between the
g-factors of the s and p orbitals (for α= π/2 the g-factors are the
same, for α= 0 they have opposite sign). The term proportional
to δ introduces the non-Hermiticity. We provide a physical
motivation for its specific form below.

Our regime of interest is close to the phase transition between
the topological and trivial insulator phase (Fig. 1d), where the
low-energy physics of the model is described by a 3D Dirac
equation for δ= B= 0. For concreteness, we choose parameters
M= 3 and λ= 1 throughout and then consider a finite δ (see
Supplementary Note 2 for a full phase diagram). Assuming PBCs,
we observe that δ opens a series of point gaps in the bulk complex
spectrum of H(k) (Fig. 1e), while the line gap pertaining to the
Hermitian 3D TI phase is closed for ∣M− 3∣ < δ (Fig. 1f). We
posit that the constructed point-gapped Hamiltonian exhibits the
phenomenology of an ETI in the presence of open boundary
conditions (OBCs). The role of B will become clear once we study
its surface states below; for now, we only require B to be small
enough to not close the point gap at zero energy.

Topological invariants. Information about the spectrum with
OBC can be inferred from topological invariants computed from
bulk states with PBC. While the palette of available topological
invariants depends on the symmetry18, here we only consider
point-gap invariants that remain in the absence of symmetry.

Specifically, in 3D there are three non-Hermitian weak integer
winding numbers w1D,j tied to specific directions in momentum
space33. In addition, there is an intrinsically 3D integer
invariant18,28,34 w3D (see Methods). While non-vanishing w1D,j

have been related to the collapse of the point gap under OBC
(non-Hermitian skin effect)27,33, the physical significance of w3D

has previously not been clarified.
In the following, we demonstrate the bulk-boundary corre-

spondence for a system with nonzero w3D that does not suffer
from a skin effect and find that it exactly corresponds to the ETI
as characterized above. The necessary condition for the absence of
the skin effect, w1D,x= w1D,y=w1D,z= 0, holds for the Hamilto-
nian in Eq. (1). The values of w3D in the point gaps of the
Hamiltonian are indicated in Fig. 1, e, f.

Surface states. We study model (1) in the presence of an open
boundary. Owing to the Zeeman term, the model is symmetric
under 2π/3-rotations around the (111)-axis, implying the OBC
spectra for x, y, and z termination are equivalent. We thus con-
sider OBC with N layers in z direction and PBC in x and y
directions (the “slab geometry”). We set δ= λ= 1 and M= 3
throughout the discussion.

We begin with the case B= 0, when the problem is analytically
tractable35 at kx= ky= 0 (see Supplementary Note 1 and 2), and

the characteristic polynomial E4ðE2 � 1Þ2ðN�1Þ has four roots at
E= 0. However, we find only two linearly independent
eigenstates at this energy (one localized at either surface),
indicating that the Hamiltonian is defective at this point. Solving
for the dispersion of the zero-energy states perturbatively in

k ¼ ðk2x þ k2yÞ
1=2

, we find EN ðkx; kyÞ ¼ ±
ffiffiffiffiffiffi
± i

p
2N=2

ffiffiffi
k

p
. In the

thermodynamic limit N→∞, this leads to an infinitely steep set
of eigenvalue branches, which is why we call kx= ky= 0 an
infernal point. A similar exceptional point with an order
equivalent to system size was found in ref. 35, although using a
two-band model (see also Supplementary Note 6).

We argue however that the infernal point exhibits a fine-tuned,
rather than the generic, surface-state structure of an ETI.
Specifically, we find the surface spectrum to be regularized by
small perturbations, such as the finite Zeeman term in Eq. (1),

which we expect to be generally present in a physical realization.
Note that B ≠ 0 breaks the isotropy of the model by selecting the
(1,1,1)-direction. While the OBC spectra in the x, y, and z
direction are equivalent, a surface termination perpendicular to
the (1,1,1)-direction still exhibits the infernal point. We first study
the effect of the Zeeman term with α= 0 and α= π/2 separately
and then discuss the transition between the two.

For α= π/2 (Fig. 2a), we find a single sheet of complex-
eigenvalue states localized on the top surface to cover the point-
gap region in the complex-energy plane (along with another sheet
with eigenstates localized on the bottom surface). We numerically
determine the “dispersion” of the surface state as E(kx, ky)∝ (
kx+ iky) to linear order in kx and ky. Thus, the system has a single
Fermi point in the surface Brillouin zone (BZ) at kx= ky= 0.

An odd number of Fermi points is impossible in a strictly 2D
model due to the non-Hermitian fermion doubling theorem31. This
follows because eigenvalues of a 2D Hamiltonian define continuous
maps from a 2D BZ torus to the complex planeC. Since the BZ has
no boundary, each point in C, including E= 0, must be the image
of an even number of momenta in the BZ. The single-sheet
covering of the point gap exhibited by the ETI is thus anomalous
and only possible because it is connected to a 3D bulk spectrum.

For α= 0 (Fig. 2b), a single exceptional point is found on the
surface of the ETI. Likewise, this situation is anomalous since also
an odd number of exceptional points cannot be realized in purely
2D according to the non-Hermitian fermion doubling theorem31.
In fact, each energy in the point-gap region is covered exactly
once, reminiscent of the previously discussed α= π/2 case.

Interpolating between α= 0 and α= π/2 changes the surface
spectrum by moving the exceptional point on the surface out of
the point gap into the spectral region of the bulk states. This is
analogous to surface states of a conventional 3D TI, where the
topological surface Dirac cone can either be found within the bulk
energy gap or can be “buried” in the bulk energy bands3,4, leaving
a single band sheet on the surface (see Supplementary Note 3).
We find an exact bulk-boundary correspondence between
invariant w3D and the number of point-gap covering surface-
state sheets by considering a Hermitian doubled Hamiltonian25

that corresponds to two ETI copies related by Hermitian
conjugation (see Methods).

Another generic property of the ETI emerges when considering
OBC in two directions (while keeping PBC in the third direction),
where a surface skin effect36 localizes order N states exponentially
at the hinges. This is related to a higher order skin effect37. One
particular difference between the two values of α can be seen in
the localization of the modes, for α= π/2, the spectral weight of
the surface states concentrates on two opposite corners (Fig. 2c).
By contrast, for α= 0 the surface exceptional point localizes all
the surface states exponentially towards one side (Fig. 2d).

Berry flux. The anomalous boundary states of an ETI are tied to
the nontrivial bulk topological invariant (5) via the bulk-
boundary correspondence. To substantiate this claim we refor-
mulate the invariant as follows. Recall that a non-Hermitian
Hamiltonian with a point gap can be continuously deformed into
a unitary matrix while preserving locality and band topology28.
Such a deformed Hamiltonian has orthogonal eigenstates with
eigenvalues lying on a unit circle, E(k)→ eiε(k), suggesting an
interpretation as a periodically driven (i.e., “Floquet”) quantum
system38. In this context, ε is referred to as quasi-energy. Then
(see Supplementary Note 4 or ref. 38),

w3D ¼ CFSðμÞ; ð2Þ

where the right-hand side denotes the Chern number of the
Fermi surface at (arbitrary) quasi-energy μ, i.e., FS(μ)= {k∈
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BZ ∣ ∃ a: εa(k)= μ} with a the band index. Equation (2) allows to
interpret a nonzero w3D as counting the quanta of Berry flux that
circulate around the point gap in the complex-energy plane39,40.

The Berry flux can be related to the ETI surface states as
follows. Consider the system with OBC in z direction and PBC
otherwise and assume a series of cuts through the 2D surface BZ.
Each cut represents a fictitious 2D non-Hermitian system with
OBC in one direction. In 2D, isolated bands can be characterized
by an integer Chern number C17,42. If ∣C∣ is nonzero, the
corresponding number of edge-localized topological modes
connect the band with the other bands inside the complex plane,
similar to Hermitian Chern insulators that describe the integer
quantum Hall effect in lattice systems43.

We visualize the construction for model (1) in Fig. 2e along
the cuts shown in the insets. We observe that the four bands of
the model project to three distinct regions in the complex plane.
Panels (e-ii), (e-iv), and (e-vi) indicate critical cuts when the
bands exchange Chern numbers, while in the intermediate
regions the bands exhibit fixed values C= 0 or C= ± 1. We
observe in the sequence of cuts that a Chern dipole is formed on
the left side of the point gap, by transferring a Chern number +1
(in a clockwise direction) between the two bands that touch in the

second panel. The topological charge C=+1 is then transferred
between the upper left and the upper right band, and finally back
to the lower band. Thus, a quantum +1 of Berry flux is pumped
clockwise around the point gap, in accordance with the rewriting
of w3D in Eq. (2). Note that Fig. 2e also indicates the boundary-
localized edge modes which at each stage connect bands with
opposite Chern numbers. As such, they necessarily swipe over the
entire point-gap region during the pumping process, thus
forming the protected topological surface state of the ETI.
Consequently, the Chern number flow around the point gap
corresponds to a rotation of the chiral edge state, which leads to
the anomalous net surface chirality. Combining the series of cuts
with a momentum resolution in Fig. 2f provides a visual
connection between the numerically obtained surface spectra
and the topological invariant.

Based on the relation between w3D and the Berry flux, we
expect ETIs to arise generically out of critical 3D band structures,
in particular from Weyl semimetals44. Note that for δ= 0 and
α= π/2, Hamiltonian (1) is precisely a Weyl semimetal with a
pair of Weyl points at k= ±B. These are a source and a sink of
unit Berry flux45. With OBC, the Weyl points are connected by
surface Fermi arcs. Upon including δ ≠ 0 the eigenvalues of the

Fig. 2 Open boundary condition (OBC) spectra of the exceptional topological insulator. a, b Complex-energy spectrum for the central point gap [cf.
Fig. 1f] for OBC in the z direction and for a momentum resolution of δk= 2π/800 in both kx,y-directions (B= 0.2, δ= 1). Red tones highlight states of large
surface localization, with the light gray mesh of finer resolution δk= 2π/2400 indicating the band energies along lines parallel to either the kx or ky axis.
Concretely, we compute the inverse participation ratio (IPR), which sums the wavefunction over the lattice sites along the finite dimension z. A completely
delocalized (bulk) state corresponds to vanishing IPR. A single surface band covers the point gap with a regular grid for α= π/2 (a), whereas the presence
of an exceptional point at the origin for α= 0 is revealed by a 2π disclination (b) (see also Supplementary Note 3). c, d Summed density profile ∑i∣ψi∣2 of
the eigenstates in the central point gap for open boundaries in z and y direction indicated with color scale (B= 0.2, δ= 1), showing a surface skin effect.
The insets display the corresponding energy spectrum in the complex plane, with the selected states highlighted in red. The single surface band for α= π/
2 shows a boundary localization in two opposite corners (c), whereas the exceptional point for α= 0 localizes all surface states in one corner (d). e Chern
number (white numbers) evolution for a series of cuts in the surface BZ to illustrate the chiral charge pumping around the point gap for α= 0.9 (B= 0.5,
δ= 1). The employed colormap highlights the localization of the respective eigenstates. f Combination of cuts from panel e, zoomed onto the central point
gap, highlighting how the single-sheet covering in panels a, b relates to the chiral edge states in e. The inset indicates the employed color scheme for
momenta in the surface BZ as well as the cuts used for diagonalization (shaded area). Only bulk states and states localized on the upper surface are
displayed (α= 0.9, B= 0.5, δ= 1).
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Weyl points acquire different imaginary parts, such that
inevitably a bulk spectrum with a point gap emerges (Fig. 3a and
b). Under OBC, the point gap is filled with Fermi-arc states that
connect the Weyl points (green). These are the ETI surface states.
In Fig. 3c and d we show the surface spectral function for a Weyl
semimetal and an ETI. The latter is characterized by only one
visible Weyl cone and a broad signal from the surface states that
gets sharper closer to the cone. This indicates that the ETI, which
is a point-gapped non-Hermitian topological phase, is spectro-
scopically a semimetal with a vanishing density of states at
ReðEÞ ¼ 0.

Non-Hermitian terms. We finish by discussing how the non-
Hermitian term iδτxσ0 may arise in a 3D TI and which measur-
able consequences it has. In principle, a tailored orbital-
dependent coupling to a lossy mode would suffice to give rise
to such a term. For instance, we can consider an additional
impurity, e.g., f-orbital at energy μf in the unit cell with no dis-
persion but finite lifetime Γ as a representative source for non-
Hermitian contributions to the electronic self-energy. If this
short-lived f-electron couples to the s, p orbitals of the topological
insulator with hopping strength tf, the single-electron Green’s
function acquires a complex self-energy Σ ¼ it2f =ðΓ� iμf Þðτ0σ0 þ
τxσ0Þ (see Supplementary Note 5). For μf≪ Γ, the non-Hermitian
term dominates and, up to an overall imaginary shift in the
spectrum, contributes the desired non-Hermitian term in Eq. (1).
Alternatively, electron–phonon-scattering can act as a source for
the non-Hermitian terms in the self-energy, likewise leading to
the topological features of an ETI.

Classical analogs to quantum mechanical topological states can
be constructed in a variety of platforms, including phononic46,47,
photonic48–50, and electrical51 meta-materials. The ETI is no
exception to this. For realizations by design, a two-band model35,
which, however, requires a more complicated anti-Hermitian
term than the four-band model of Eq. (1), may be more amenable
(see Supplementary Note 6).

Discussion
We introduced 3D ETIs, a phase of matter governed by a local non-
Hermitian (Hamiltonian) operator with a point gap and topological
surface states. In particular, we show that a Weyl semimetal with
two Weyl nodes at the Fermi energy generically becomes an ETI

under a non-Hermitian perturbation that opens a point gap.
Besides the realization of ETIs in (meta-)materials, open questions
for future research include: How are ETI phases further differ-
entiated by the addition of symmetries? What are alternative
representations of the topological invariants in terms of symmetry
indicators? What role do interactions play in the stability of ETIs?
Our findings are the first step towards a microscopic understanding
of such non-Hermitian topological matter.

Methods
ETI tight-binding model. As an illustrative model for the ETI phase, we consider
in the main text a cubic lattice with two orbitals s (γ= 0) and p (γ= 1) and spin ↑,
↓ per site. The lattice is spanned by the unit vectors ei, i= x, y, z, giving rise to the
tight-binding Hamiltonian

H ¼ �M∑
r;γ
ð�1Þγ cyr;γσ0cr;γ

þ 1
2
∑
r;γ

∑
i¼x;y;z

ð�1Þγ cyrþei ;γ
σ0cr;γ þ h:c:

þ λ

2i
∑
r;γ

∑
i¼x;y;z

cyrþei ;γþ1σ icr;γ þ h:c:

þ∑
r;γ

∑
i¼x;y;z

Bi ð�1Þγ cosðαÞ þ sinðαÞ½ � cyr;γσ icr;γ

þ iδ∑
r;γ

cyr;γþ1σ0cr;γ;

ð3Þ

where we use γ modulo 2 and the Pauli matrices as σμ, μ= 0, x, y, z with the 0th

Pauli matrix as the 2 × 2 identity. The operator cyr;γ ¼ cyr;γ;" cyr;γ;#
� �

then creates an

electron in orbital γ at lattice site r with the respective spin orientation.

Topological invariants. Two important invariants exist for 3D non-Hermitian
systems in the absence of any symmetry. First, specific directions in momentum
space are equipped with a weak integer invariant33,

w1D;j ¼ �i
Z
BZ

d3k

ð2πÞ3 Tr½QjðkÞ�; ð4Þ

with QjðkÞ ¼ ½HðkÞ � E��1∂kj ½HðkÞ � E�, E is any complex value in the point gap,

j= x, y, z, and BZ= [−π, π]3 denotes the 3D Brillouin zone. A nonzero w1D,j

indicates the non-Hermitian skin effect27,33, under which the spectrum collapses
upon considering OBCs. Hence, a vanishing w1D,j= 0 is required for the obser-
vation of topological surface states.

Such a scenario is indicated by an intrinsically 3D integer invariant18,28,34

w3D ¼ �
Z

BZ

d3k
24π2

ϵijkTr½QiðkÞQjðkÞQkðkÞ�; ð5Þ

where the summation of repeated indices i, j, k is implied and ϵijk is the Levi-Civita
symbol. The physical significance of a nonzero w3D is the ETI phase presented in
this manuscript.

Fig. 3 Inducing an ETI in a Hermitian Weyl semimetal. a Schematic band structure of a Weyl semimetal with two Weyl cones of opposite chiral charge
(red vs. blue) connecting bulk valence (cyan) and conduction (pink) bands. b An ETI with a point gap (green) arises if we assign different lifetimes to the
two chiral fermions. The bulk states carry a quantum of Berry flux around the point gap. c, d Spectral density derived from the surface Green’s function41

G(k,ω) via Aðk;ωÞ ¼ �1=π Im Tr Gðk;ωþ iϵÞ, along momenta k1,2= (kx ± ky)/2 and for frequency ω. We set the smearing factor to ϵ= 0.1 and the non-
Hermitian term to δ= 0 (c) resp. to δ=−1/2 (d), for Hamiltonian parameters M= 3, α= π/2, and B= 1/2. We added the term iδτ0σ0 to the Hamiltonian
in order for all eigenvalues to have a nonpositive imaginary part.
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Proof of bulk-boundary correspondence. The ETI bulk-boundary correspon-
dence builds on the fact that the point gap of an ETI necessarily fills up with
surface-localized states when OBCs are introduced. These midgap surface states are
topologically protected by the nonzero ETI bulk invariant w3D without the
assumption of additional symmetries, similarly to how the edge states of a Chern
insulator are protected by a nonzero Chern number.

We consider an ETI that is described by a Bloch Hamiltonian Q(k) with a point
gap around the complex-energy E0, and a winding number ∣w3D∣= 1. Since the
winding number is quantized, we may equivalently consider any other E0 lying
within the same point gap. We now define the Hermitian double

~HðQðkÞ � E0Þ ¼
0 QðkÞ � E0

QðkÞy � E�
0 0

� �
; ð6Þ

which describes a topological insulator in Altland–Zirnbauer class AIII with a
single surface Dirac cone52. Correspondingly, the Hamiltonian ~Hslab obtained by

placing the real-space version of ~HðkÞ in a slab geometry satisfies detð~HslabÞ ¼ 0:

for both surfaces, the chiral symmetry of ~Hslab enforces a spectral pinning of the
surface Dirac crossing to zero energy. We do not resolve any remaining
momentum quantum numbers because a surface Dirac cone in class AIII is not
pinned to any particular surface momentum. In the slab geometry, the
decomposition reads ~HslabðQslab � E0Þ, where Qslab is the non-Hermitian
Hamiltonian obtained by placing the real-space version of Q(k) in the slab
geometry. The surface Dirac cones of ~Hslab then imply

detð~HslabÞ ¼ det½�ðQslab � E0ÞðQy
slab � E�

0Þ� ¼ 0

! detðQslab � E0Þ ¼ 0;
ð7Þ

from which we deduce that Qslab has at least one eigenvalue equal to E0.
After establishing the presence of protected midgap states in the slab spectrum

of an ETI, described by a Bloch Hamiltonian Q(k), we next derive its unique
topological surface characteristic: the surface chirality. By this, we mean the
accumulated winding of all energies of the states on a given surface around a
reference energy E0 (chosen to lie within the point gap), which can be calculated via
the formula

νðE0Þ ¼
1
2π

I
γðE0 Þ

∂k ∑
i
Arg½Eiðk?Þ � E0�

	 

dk 2 Z; ð8Þ

where the path of momenta γ(E0) is obtained as the surface Brillouin zone
preimage of any connected set of energies Ei[γ(E0)] that encircles E0 counter-
clockwise in the complex plane. Note that all Ei[γ(E0)] should lie within the point
gap. We will prove that ∣ν(E0)∣= 1 is nonzero for all choices of E0.

Recall the expression for the surface winding number of a Hermitian
topological insulator in class AIII53,

νHermitian ¼ 1
2π

I
λ
Im tr q k?

� ��1
∂kqðk?Þ

h i
dk 2 Z; ð9Þ

where q(k⊥) forms the Hermitian surface Hamiltonian ~Hsurfaceðqðk?ÞÞ and λ is
any (possibly disconnected) path in the surface Brillouin zone that encloses all
surface Dirac cones in the spectrum of ~Hsurfaceðqðk?ÞÞ counter-clockwise and
only covers surface-localized states. ∣νHermitian∣ then counts the number of
topologically protected surface Dirac cones.

We now relate the Hermitian surface winding number νHermitian to the non-
Hermitian surface chirality ν. In the absence of a collapse of the bulk spectrum of
Q(k) as we open the boundary conditions, we can interpret [q(k⊥)− E0] as the
effective surface Hamiltonian of the ETI [Q(k)− E0] [whose Hermitian double is
~HðQðkÞ � E0Þ in Eq. (6)]. Also, as long as E0 lies in the point gap, the nontrivial
ETI invariant ∣w3D∣= 1 implies a single surface Dirac cone for the Hermitian
double52, resulting in the equality

±1 ¼ νHermitianðE0Þ

¼ 1
2π

I
λðE0Þ

∂ktr Im log ½qðk?Þ � E0�

 �

dk

¼ νðE0Þ;

ð10Þ

where we substituted λ→ λ(E0) (the location of the surface Dirac cone varies with
E0), and then identified γ(E0)= λ(E0). It remains to be shown that our definitions
of λ(E0) and γ(E0) are compatible, that is, that the eigenvalues of q[λ(E0)] wind
around E0. This must be so because ν(E0) could otherwise not take on nonzero
values. Furthermore, since ν(E0) is quantized, any other choice of γ(E0) that has the
abovementioned properties is equally valid, thus completing our proof.

In conclusion, we find that the surface band structure of an ETI is characterized
by an anomalous net chirality, which cannot be realized in a purely 2D system, but
is instead enabled by the presence of the topologically nontrivial 3D bulk.
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